Int. J. Solids Structures, 1974, Vol. 10, pp. 709-734. Pergamon Press. Printed in Gt. Britain.

DYNAMIC PLASTIC DEFORMATION OF
HEXAGONAL FRAMESY

CARL K. YOUNGDAHL

Components Technology Division, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, Illinois 60439, U.S.A.

(Received 13 August 1973 ; revised 8 November 1973)

Abstract—The dynamic plastic response of a hexagonal frame to an internal pressure pulse of
arbitrary shape is analyzed, including large-deformation geometric effects that result in redistri-
bution of the bending and membrane reactions. Peak pressures of several multiples of the static
yield load are considered, and the frame material is assumed to be rigid perfectly plastic. The
effect of pulse shape on final plastic deformation is determined by numerically solving the
governing sets of differential equations for a variety of parameter combinations. In the small
deformation range, the permanent plastic deformation is shown to be dependent on an effective
pressure, defined in terms of the first moment of the pressure pulse; the response duration is
proportional to the pulse duration. In the large deformation range, the permanent plastic de-
formation is a function of the average pressure applied during the response, and the response
duration depends on a characteristic time constant which is a function of material properties
and hexagon size.

INTRODUCTION

A typical reactor core configuration consists of an array of long, thin-walled subassembly
ducts of hexagonal cross section, each containing an array of fuel elements. The space
between adjacent subassembly ducts is approximately equal to the wall thickness; this gap
is maintained by spacer pads at various axial locations. Fuel replacement is accomplished
by removal of a subassembly duct with its enclosed fuel elements by means of a fuel handling
mechanism, which may be designed to extract only one subassembly at a time.

Fuel element failure may result in a fuel-coolant interaction or fission gas release which
exposes the subassembly duct to an internal pressure pulse. The resulting duct deformation
may be of the order of its wall thickness or larger, and plastic yielding of the wall may occur.
If the permanent deformation is sufficiently large, the duct may be jammed into adjacent
ducts or it may bind on the spacer pads during an attempt at removal of the damaged duct;
then standard removal procedures may not be effective. If the damaged duct is adjacent to
a control rod channel, interference with control rod motion may necessitate shutdown of
the reactor until repairs can be made.

For a thin-walled, hexagonal crosssection, large-deformation geometric effects result
in redistribution of the loading between the bending and membrane reactions, so that the
deformed duct can withstand a static pressure higher than the yield limit of an undeformed
hexagon. However, the application of a pressure pulse results in dynamic deformation,
which may, because of inertia effects, significantly exceed the deformation caused by a static
pressure having the same peak value. Conversely ,a pressure pulse may produce less deforma-
tion than a statically applied pressure if the duration of the pulse is sufficiently short.

t Work performed under the auspices of the U.S. Atomic Energy Commission.
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Because of the statistical nature of the phenomena involved, pressure pulses resulting
from fuel element failures are not well defined and are difficult to reproduce in laboratory
simulations of pulse loadings on ducts. Accordingly, an analytical study has been performed
to: develop a computational procedure for determining the dynamic plastic response of a
hexagon to an internal pressure pulse, including large deformation effects; determine the
effect of pulse shape on the permanent deformation of the hexagon; develop procedures for
correlating permanent deformation with easily measured parameters associated with the
pulse shape; and determine characteristic response times for plastic deformation of a thin-
walled hexagon.

Results of the investigation indicate that in the small deformation range the final plastic
deformation depends on the impulse and an effective pressure defined in terms of integrals
of the pressure pulse, analogous to the correlation for other structural configurations{1].
The use of the impulse and effective pressure as correlation parameters eliminates the effect
of pulse shape on final deformation and facilitates the interpretation of experimental
results. The time scale of the dynamic deformation is proportional to the time scale of the
pulse, as is typical of small-deformation plasticity solutions, and no intrinsic time constants
are involved.

In the large deformation range, the final plastic deformation depends on the average
pressure applied during the deformation. Characteristic time constants for the deformation
were obtained in terms of material properties and hexagon dimensions; these are in the
millisecond range for typical subassembly ducts, which corresponds to the time scale of
pressure pulses resulting from fuel element failure.

The approach to the large-deformation analysis is similar to that used by Symonds and
Mentel[2], Jones[3], and Symonds and Jones[4], for the finite plastic deflections of beams
with axial restraints. The motion of the hexagon has an additional degree-of-freedom in
that the corners of the hexagon are free to move along radial lines rather than being com-
pletely restrained as in the beam analyses. The * plastic string” phenomenon which
appeared in the beam analyses did not occur here.

STATEMENT OF PROBLEM

A cross section of an internally pressurized hexagonal subassembly duct of wall thickness
H and side width L is shown in Fig. 1. The effect of axial variation of the deflection shape
is neglected compared with the geometric effects of large distortion of the cross section.
Consequently, the problem is reduced to finding the dynamic plastic deformation of a
hexagonal frame loaded by a time-dependent pressure P(t). The redistribution of the
dynamic loading between bending and membrane reactions as the deformation of the cross
section proceeds is included in the analytical model for the large-deformation geometric
effects. Because of symmetry, only the half-side 4B need be considered.

The hexagon is assumed to be made of a rigid, perfectly plastic material having yield
stress o, and density p. Elastic deformation is neglected compared with the plastic deforma-
tion; strain hardening is neglected compared with the large-deformation geometric effects.

Important constants of the hexagon deformation model include a geometric parameter
o and a time constant ¢,, defined by

o= HJL,

1
t(,:L\/ﬂ. M
G,V
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Fig. 1. Hexagon subjected to internal pressure pulse.

For an EBR-II reactor subassembly duct, L = 1-32 in., H = 0-04 in. and « = 0-03; for an
FFTF reactor subassembly duct, L = 248 in., H = 0-14 in. and o = 0-056. These two duct
sizes essentially span the range of typical duct designs. For steel ducts with a yield stress of
30,000 psi, to = 0-16 msec for EBR-II dimensions and ¢, = 0-3 msec for FFTF dimensions.

Two variables of particular interest in this study are Uy, the outward deflection at the
center of a side of the hexagon, and U ,, the outward deflection at a corner. A negative
value for U, which occurs in some of the results shown here, indicates that the corners
move inward. Another quantity of interest is the response duration ¢;, i.e. the time interval
over which dynamic plastic deformation occurs. The values of U, and Ujp at ¢, will be
denoted by U,, and Up,, respectively.

Yield condition and flow rule
The yield condition, shown in Fig. 2, is given by

+ - —1=0, 2
M, TN @
where N and M are, respectively, the resultant membrane force per unit axial length and
bending moment per unit axial length arising from the stress distribution across the wall
thickness at a plastically deforming location on the side of the hexagon; N, and M,, the
values of N and M for pure stretching and pure bending, are

o, H*

N0=ayH’ M, = 4 (3)

The plastic flow rule states that, during plastic flow, the generalized strain rate vector has
the direction of the exterior normal to the yield condition at the considered generalized stress
point[5]. Let A and 8 be the stretch and angle change at a point on the side of the hexagon
where plastic deformation is taking place. Then, writing equation (2) as f(N, M) =0,
we have

dA/d0=”8Z_/~(Z‘ @

dt/dt  ON[ oM
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Fig. 2. Yield condition.

For the first quadrant of Fig. 2, which is the relevant one for this problem, the flow rule
becomes

dA N df

& 20 d ®)

for N < N,.

Limit load of undistorted hexagon

Let P, be the limit load of the undistorted hexagon, i.e. the pressure at which the hexagon
is in static equilibrium but plastic deformation is incipient. Plastic hinges are produced at
the corners and centers of sides, where the yield condition is satisfied, and intermediate
positions along the sides correspond to interior points of the yield condition (Fig. 2).

A free-body diagram of the half-side 4B is shown in Fig. 3. From the equations of equi-
librium in the horizontal direction, we have that the membrane forces at 4 and B are equal
in magnitude (N,) and opposite in direction. By equation (2), the bending moments at 4
and B must be equal in magnitude (M,), and be directed as shown in Fig. 3 to resist the angle
change. The symmetry of the problem requires that there be no vertical reaction at the
midspan B and no reaction parallel to the dashed line at the corner A; this last condition

implies that
N,=./3F. (6)
Equilibrium of moments and vertical forces requires that

P,I? J3
M,==2=, N,=""PL @)
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Fig. 3. Free-body diagram of hexagon half-side at initial yield.

Substitution from equations (7) into the yield condition (equation 2), results in a quadratic
equation for P,; its solution is

8a’a
= ___y__; (8)
1+ /1 + 48
The bending moment distribution in the half-side is given by
8x? L
M(x)=My(1—Liz), 0<x<7 o)

where x is measured from point B. Consequently, the magnitude of M is equal to M, at
points 4 and B and less than M, at interior points.

For o, = 30,000 psi, P, = 107 psi for EBR-II duct proportions and P, = 363 psi for
FFTF duct proportions.

First plastic deformation mode

The simplest deformation mode which occurs during dynamic distortion has plastic
hinges at the corners and midpoints of the sides of the hexagon connected by rigid sections
of width L/2. A free-body diagram of the typical half-side 4B is shown in Fig. 4. The
stretches at the plastic hinges are A, and Ap, and the angular rotation occurring at each
hinge is 8. Because of symmetry, (1) the force resultants at 4 and B must be perpendicular
to the dashed lines, and (2) the velocities and displacements of points 4 and B must be
along the dashed lines. Therefore,

N =./3F (10)
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Fig. 4. Free-body diagram of hexagon half-side for first plastic-deformation mode.

and

L da
[VP + (Z + AB)Q] tan@ = d_tB - VT’

L dA (an
[VP - (Z + AA)Q] tan (g - 0) =1V,

dt

where Q(t) is the angular velocity, and Vp(t) and V(t) are the velocity components of the
center of mass of the half-side perpendicular and parallel, respectively, to the instantaneous
position of the half-side.

The equations of motion of the half-side of the hexagon are

pHL? dQ NglL | NAL(COSB . )
— = - -~ Mp—~——sinf + ——f—— —sin b},
% dr M, B 4 sin + 4 \/3 sin

pHL dV, PL ) . cos 0
—2—E€=7—NBSIHG+NA(SIHB—\/3), (12)
pHL dV. sin 6

Td—thNA(cos6+—\—7§— — Njgcos 6.

The yield condition and flow rule for the plastic hinges at 4 and B are

Moy (Moo, 9 2a0
No

M, dt = 20,
(13)
M,,_}_(NB)Z_1 dAy NgQ
M, \N,)] 7 dt = 2,
The angular rotation 6 is found from
dé (14)

a =
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and the displacements at the corner and midspan are given by

U, =2A4 + Ag)cos 0 — L(1 — cos 0), (15)
Up=14/3U,+(GL+ Ay + Ap)sin 6,

where U, and Uy are measured positive outward along the dashed lines in Fig. 4.
Equations (10-15) give thirteen relations for determining the unknown functions of time
Ny, Ny, My, Mg, F, Q, Vp, V., Ay, Ag, 0, Uy, and Uy for a prescribed loading P(1).
This set of equations was solved numerically, using a computer subroutine based on the
Bulirsch~Stoer extrapolation method for solving coupled ordinary differential equations[6].
The bending moment distribution in the vicinity of point B, the center of the side, is
given by

4x*(4x — 3L)

M(x, t) = Mg+ 3 (M, + M)
4x*(x — L) . 2x3(L — 2x) cosf .
+-—L—2—NBsm0+ I NA(\/5 —smﬂ), (16)

where x is measured from point B along the distorted side. The first derivative of M at B
is zero. Therefore, the bending moment has a relative maximum at B if its second derivative
there is negative. For some pulse shapes, the computed values of N,, Ny, M, and My are
such that the second derivative of M at B, given by

cos 0
NE

becomes zero at some time while P is increasing. In order not to violate the yield condition
at a point near B, which would occur if the second derivative changed sign, a hinge band
begins to form at B and spreads out from there as P increases. Plastic deformation involving
a hinge band at B and a hinge at 4 will be called the second plastic deformation mode and

will be discussed next. By equation (17), the transition from the first to the second deforma-
tion mode is signaled by

*M
ax2 x=0

24 8 4
:—'I?(MA+MB)_zNBSin9+iNA( —sinH), 7

0
-—6(MA+MB)—2NBLsin9+NAL(C\O/—S3—sin 9) =0. (18)

Second plastic deformation mode

The second deformation mode has a plastic hinge at the corners and a hinge band at the
center of each side; there are moving hinges at the ends of the hinge bands, and a rigid section
of wall connects each moving hinge with the nearest corner hinge. A free-body diagram of
the typical half-side AB is shown in Fig. 5. The half-width of the hinge band is &(t)L/2, and
the stretches at the moving hinge and corner hinge are A, and A, respectively.

As for the first mode, the symmetry of the problem requires that (1) the force resultants
at 4 and B must be perpendicular to the dashed lines, and (2) the velocities V, and V; and
the displacements U, and Uy must be along the dashed lines. The condition on the force
resultant at the corner gives

N,=.\/3F, (19)
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Fig. 5. Free-body diagram of hexagon half-side for second plastic-deformation mode.

and the condition on the velocity resultant at the corner gives

Lde _v dA,
4dt T

L 7 L de dA
Ve— |- (1~ A4 |Qitanf— — S V-2 =0.
i [4( 8”‘]}”(6 9)+[4dt T dz]
Assuming that M and N do not vary along the hinge band, all plastic deformation associated

with the band occurs at the moving hinge at its end. Since the velocity at B is vertical by the
second symmetry condition above, the horizontal velocity component at the end of the

VAcos-g={Vp—{§(1—e)+AA]Q}cos(9+{ ]sm(?

(20)

L de
band is the band growth rate T Let the vertical velocity component at the end of the

band be V, (positive downward); the velocity components at the end of the band are then
related to motion of the rigid portion of the half-side through

Lde L Lde dA
T {VP [4(1—6)+AB]Q}sm9+(4d+VT——dt—B)cos(9 |
(21
L L de dAg) .
V,= {VP+ [Z(l —&) + AB]Q}COS g — (Z& + Vi — d—:)sm .
The equation of motion for the hinge band region is
dvix,t) eL
= < - 22
pH P P(1), O0<x< 5 (22)
this can be integrated to give
L
pHV(x, )= [Pdt+ G(x), 0<x< % (23)

where G(x) is a function to be determined from the motion. In particular, letting x = 0 gives

pHV, = f P dt + G(0), (24)
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. )
and letting x = 5 gives

L
pHY, = [Pdi + G(a—)~ (25)
2
The equations of motion of the rigid portion of the half-side are

301 _ )3 -
pHL(1 —¢) d»_Q=—MA—MB+L(1 8)[—NBsinbl—l-NA(cos‘g—sinf))],

96  dr 4 J3
HL(1 —&)dV, PL(1 —¢) ) cosf .
p__.(_z__._)d—tp-—-——(2——‘—N351n9 NA( \/— _Slne), (26)
PHL( — &) dVr _ ( s0+ sin 9 6) — Ny cos 6.
2 d J3

The yield condition and flow rule for the plastic hinges at the corner and end of the hinge
band are

MA+ (N‘)2=1, dA, _N,Q

M, Ng dt 20,
My, (NB)2 _, 9 _N0 27)
M, \N,] " dt 20,

The angular rotation, displacement at the corner, and displacement at midspan are given by

dé dUu, dUpg
5-9% =V S=Ve (28)
where V, and V; are found from equations (20) and (24).
The bending movement distribution near the hinge band end of the rigid portion of the
half-side is

eL\? (4(4x + ¢L ~ 3L)
M= e T S e
MB+(x 2){ B (Ma+ M)

2
S [(Zx +eL—2L)Nysin 0 + (L — 2N, (°°s_0 —sin 0) . @9

TFa-9 V3

The derivative dM/dx is zero at x = eL/2. Let

*M L
Q———-—- at x=fz—- 30)

The yield condition would be violated in the vicinity of the end of the band if Q were
positive. If the hinge band is increasing in size, we have

d
0=0 for a';fzo 31)

1JSS Vo110 No7 — B
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and if it is decreasing in size,

d
0 <0 for a—j <0. (32)

Differentiating equation (29) twice and evaluating the result at x = ¢L/2 gives
[—2N,, sin 6 + N, (Coig — sin 0)] . (33)
V'3

For ¢ increasing (which occurs, in general, for P increasing), equations (12-21), (24-28).
and (31) are eighteen relations for determining the unknown functions N4, Ny, M, My,
FQ Ve, Vi, Vi, Vo, V., Ay, A, 0, Uy, Uy, ¢ and G for a prescribed loading P(t) such
that the motion is in the second deformation mode. If the hinge band is decreasing in size,
equation (31) does not apply; however, G(x) is now a known function since ¢ is retreating
through the same values it passed through as it was increasing. Consequently, there is one
less unknown function, and one less equation is needed.

4
Q= 22 (M 4+ Mpg) +

I - L(1 —¢)

Other plastic deformation modes

The two deformation modes described above each result in the hexagon being distorted
into an irregular twelve-sided figure. Severe loadings can produce transitions to higher
deformation modes with twenty-four sides, forty-eight sides, and so on, until an approxi-
mately circular shape is attained. Such gross distortions of the cross section are beyond the
scope of this study, and only the first and second deformation modes are treated.

Initial conditions

At the onset of plastic yielding, all velocities and deformations are zero. If the pressure
passes gradually through the yield load, the initial conditions on the membrane forces and
bending moments are given by equations (7).

An initial instantaneous jump to a pressure P; can produce either first or second deforma-
tion mode response. For the first mode response, the initial condition on the membrane
forces is determined by solving the simultaneous equations

(N,— Np) [2\/3 #(Ny+ Np) | ]] L 2N, _ P

Ny No V3N, (34)
NNy ( N§+N§) N,
Na— Vo gurfo—Yat B} 5 3,04

N, N3 VRN,

The initial condition on the bending moments is then found from equations (13).
For second mode response, the initial conditions on the membrane forces are

N
—~ =1+ C)C,,
=1+ GG,

’ (35)
N .
N—z = (1 - Cy)C,
and the initial hinge band width is
Pl ofl + C,)CZ’ (36)

J3C
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where C, and C, are defined by

P;
ol

C1 = GyP 5 P »

P, i i

4-———’+\/(4——-) + 112 — (37)
g, o, a,
9C, 12
e b
9C,(1+CH+ (A +Cy)

Again, the initial values of M, and Mj are found from the yield condition.

Let P, be the initial jump pressure which marks the transition between first and second
mode response. This transition pressure can be determined either by finding the value of P,
such that the values of N,, Ny, M,, and Mj calculated from equations (13) and (34)
satisfy equation (18) for 8 = 0 or by finding the value of P; such that ¢ = 0 in equation (36).
The result is

P, 4C(1 +7C)

—= (38)

oy 1+C

where C is related to « through

, C_ 31 +CY

3T Tavor &

For small values of a, P, is approximately 3P, .

RESULTS

In order to illustrate some qualitative aspects of the hexagon response, results of two
typical problems will be shown firstt. Consider an exponential decay pulse of the form

P(t)=P,e”"", t>0
P(t) =0, t<O0.

Let a = 0-056; then P, =0-01210, by equation (8). Take P, = 2P, = 0-0242¢, for each
problem, but let ¢, =0-01¢, in the first example and ¢, = 2¢, in the second, where ¢, is
defined in equations (1). The dimensionless quantities P/o,, Np/N,, U,/H, and Up/H are
shown in Figs. 6 and 7 as functions of time for each of the two examples.

Comparison of the results, which are for the same peak pressure but different pulse
duration, indicates significant qualitative and quantitative differences in the responses. For
the shorter duration pulse, the final permanent deformation at the center of the side is
approximately 1-88H x 10™*, which is in the small deformation range; for the longer
duration pulse, Up = 1'61H at the end of the motion, which is in the large deformation
range. The final deformations at the corners are 7-6H x 10~° for t, = 0-01¢, and —0-25H
for t, = 2t,, the negative sign indicating that the corners move inwards. Thus the corner
deflection is small compared to the mid-span deflection in the first example, but it is propor-
tionately larger in the second. For the longer duration pulse, the corners move out initially

(40)

T See Ref. [7] for a more detailed presentation of results.
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Fig. 6. Typical small deformation results.
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Fig. 7. Typical large deformation resuits.
and then later move in as the large-deformation membrane effects become more important;
the motion stops at a time when the applied pressure is still greater than the yield pressure
of the undeformed hexagon, which shows that the inclusion of the large deformation effects

results in a strengthening of the hexagon.
Consider a rectangular pulse defined by

P(t)ZPr’
P(t) =0,

o<t<t,,
41)

t<0 and t>1t,.

Figure 8 shows the final midspan deflection Uy, and the response duration ¢, as functions
of the pulse duration ¢, for « = 0056 and P, = 2P,. In the small deformation range the
curves for t,/to and U, /H are straight lines with slopes of one and two, respectively, indicat-
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Fig. 8. Final midspan deflection and response duration as functions of rectangular pulse
duration.

ingthat ¢ is directly proportional to t,and U, varies as t2. As the pulse duration is increased,
the final deflection and response duration increase until ¢,/f, = 1-11. For values of ¢,
greater than 1-11¢,, the deformation stops before the end of the pulse because the hexagon
is distorted into a shape that can statically withstand the applied pressuref. Consequently
the response to a step pulse is identical to the response to a rectangular pulse of the same
magnitude if ¢, is sufficiently large. The maximum midspan deflection is about 2-2 times the
wall thickness for this combination of P, and a.

Small deformation response

The dependence of the hexagon response in the small deformation range on the geometric
parameter o is essentially only through the yield load P, . This can be seen from Figs. 9 and 10
where (U,,f/H)(to/t,)2 and t,/t, are plotted as functions of P,/P, for short duration rectan-
gular pulses. The division of Uy, by t? and t; by t, is suggested by the small deformation
behavior exhibited in Fig. 8. The range of values of « shown in Figs. 9 and 10 exceeds the
range of physically realistic subassembly duct designs.

The effect of pulse shape on permanent plastic deformation has been investigated for a
variety of structural configurations[1]. The deformations were assumed to be small for each
configuration, and each was assumed to be made of a rigid, perfectly plastic material. In
each case it was found that the maximum permanent plastic deformation, U say, could be
approximated by

Uf R sz(Pe)’ (42)
where f'is a function, [ is the impulse, and P, is an effective value of the load. In essence, an
arbitrary pulse can be replaced by an equivalent rectangular pulse of height P, and duration
t,, where

P, =1,

e =21, (43)

1 Because of the kinetic energy involved in the dynamic deformation, the distortion overshoots the
amount necessary to contain the applied pressure statically[8].
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Fig. 10. Effect of o on response duration in small deformation range.

In the above, 1, is the mean time of the pulse measured from the time t, when plastic
deformation is initiated and 7 is the applied impulse during plastic deformation, i.e.

It
t, = 7 J.;y (t —t,)P(t) dt,
(44)
tr
I=1 P@)dt
R0
The final time ¢, needed to evaluate the integrals in equations (44) can be computed approxi-
mately from
ty—t, = I/P,. (45)
The correlation indicated in equation (42) is valid also for small deformations of a hexagon.
Figures 11 and 12 show Upg,/I ? (nondimensionalized) as a function of P,/P, and P,/P,,
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Fig. {2. Final mid-span deflection in small deformation range as function of effective pressure
for various pulse shapes.

respectively, for various pulse shapes, where P, is the peak pressure of the pulse and P, is
its effective value as computed from equations (43). The exponential decay and rectangular
pulses are defined by equations (40) and (41), and the linear decay pulse is defined by

¢
PG):I;(L“—), 0<t<t,
i (46)
P(t) =0, t<0 and t>1t,.

The time constants for the various pulses are chosen small enough that the response is in the
small deformation range.

From Fig. 11 we see that the final deflection is strongly dependent on the pulse shape,
even for pulses which have the same peak value and impulse. At P, = 2P,, for example, the
deformation produced by a rectangular pulse is roughly twice that produced by an expo-
nential-decay pulse. Considering the same deformations as functions of the effective pressure,
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asin Fig. 12, compresses the curves together. The dashed line in Fig. 12 is for an approximate
closed-form solution for small deformation response given in Appendix A.

In order to obtain a prediction for ¢, analogous to that of equation (45), t, P /1 is plotted
as a function of P,/P, in Fig. 13 for various pulse shapest. We see that ¢ ¢ P,/1is close to
unity for a range of values of P,/P, and also that the curve for the approximate solution is a
reasonable representation for the other curves.

1.00

098—

RECTANGULAR |

LINEAR
DECAY

ts py/I

ossl-
EXPONENTIAL
I
e

0.92}— @=0.03

0.90

Fig. 13. Response duration as function of effective pressure for small deformation range.

Large deformation response

Because of membrane effects, an internally pressurized hexagon deforms into a shape
which can statically withstand a pressure higher than the initial yield load. This static large-
deformation solution is derived in Appendix B. Applying a step pulse results in a large
deformation dynamic plastic response which stops at some time ¢, dependent on the pulse
height and the geometric parameter a. Consequently the response to a rectangular pulse with
duration greater than ¢, is identical to the response to a step pulse with the same height.
Results will be shown next for the final plastic deformations and response times produced
by step pulses.

Consider a step pulse defined by

Pt)=P,, 0<t<oo,
P()=0, t<0.

The final plastic deformation at the mid-point of a side divided by the wall thickness is given
in Fig. 14 as a function of the ratio of step pulse height to limit load for various values of .
It is apparent from the curves that a thin hexagon must deform relatively more than a thick
one in order to contain a given multiple of its respective yield load. The final displacement
of a corner divided by the wall thickness is shown in Fig. 15 as a function of P,/P, for
various values of «. Except for thick walls and small step pulse height to yield load ratios,
U, is negative, i.e. the corners of the hexagon more inwards in response to the step pulse.
The ratio of response time ¢, to time constant ¢, (see equations 1) is plotted in Fig. 16 as a
function of step pulse height divided by limit load for various values of a.

(47)

t ¢, = 0 for the pulses shown.
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Fig. 14. Final mid-span deflection for large deformation response to a step pulse.

Parameter studies were performed to determine the effect of pulse shape on the large
deformation response of the hexagon[7]. Some typical results will be presented here, and
the permanent plastic deformation produced by an arbitrary pulse will be related to that
produced by an equivalent step pulse.

Figure 17 shows results for an exponential decay pulse, defined by equation (40), with
o = 0-056. Computations were made for various combinations of the pulse parameters P,
and ¢,. The peak pressures chosen were P,, = 0:26P,, 0-3P,, 0-35P,, 0-4P,, 0-45P,, 0-5P,,,
and 0-55P,; for each of these values of P,,, calculations were performed for ¢, = t,, 2t,,
3t,, 4ty, and 5t,. The characteristic time constant ¢, for the plastic response is defined by
equations (1), and Py, is the limit load of the circumscribed circular ring, given by

H
Po=0,— (48)

The open circles on Fig. 17 are the values of Ug/H plotted as a function of P,/P,, and
the solid circles are the same values of Uy,/H plotted as a function of P 4, ¢/P,, where P,y
is the average pressure applied during the plastic response, i.e.

1 ptr
Payg=— j P(f) dt. (49)
F°o

The curve on the figure is the permanent deformation produced by a step pulse of height P,,.
It is apparent that a step pulse and an exponential-decay pulse which have the same average
value during the response produce essentially the same permanent plastic deformation.
Similar results are shown in Fig. 18 for linear-decay pulses (see equation 46) with o = 0-056.
Again the permanent plastic deformation is a function of the average pressure applied
during the deformation. This functional relationship is known from the step pulse results.
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Fig. 17. Comparison of results in the large deformation range for exponential-decay and
step pulses.
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Fig. 18. Comparison of results in the large deformation range for linear-decay and step pulses.

In experiments where U(t), P(t), Ug,, and t; can be measured, P 4 is easily determined
from P and ¢, and the correlation of Uy, to P4y can be investigated. For analytical studies,
however, there appears to be no simple relationship analogous to equations (45) for the small
deformation range to predict ¢, for the large deformation response. Without an a priori
determination of ¢, for a given pulse either the response to the step pulse with the same
height as the peak (rather than the average) pressure of the pulse may be used to bound the
permanent deformation, or the computer solution may be obtained for the given pulse.

CONCLUSIONS

The permanent plastic deformation of a hexagon resulting from a pressure pulse has been
shown to be dependent on the pulse shape, magnitude, and duration. The nature of this
dependence is qualitatively different in the small and large deformation ranges.
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The correlation of permanent plastic deformation to pulse parameters in the small
deformation range implies that an earlier occurring peak produces more deformation than
a later one of the same height and impulse. This is because an earlier peak results in a smaller
value of the moment arm of the pressure shape, t,,, and, consequently, in a larger value of
the effective pressure, P, . The response time in the small deformation range is proportional
to the time scale of the pulse and is independent of the material and geometric constants
of the hexagon.

In the large deformation range the permanent plastic deformation depends on the
average pressure applied during the deformation and, therefore, is not sensitive to the
location of the peak pressure. The characteristic response time is virtually independent of
the pulse time-scale for long duration pulses but depends on the material and geometric
constants of the hexagon through «, t,, and P,. This response time is of the same order of
magnitude as the pulse durations to which a reactor subassembly may be exposed.
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APPENDIX A. APPROXIMATE SMALL-DEFORMATION SOLUTION

Many terms in the governing sets of differential equations are negligible if the pulse
duration is such that the displacements of the sides of the hexagon are small compared to its
wall thickness. An approximate, closed-form solution can then be obtained for rectangular
pulses. This approximate solution is useful because pulses of other shapes are equivalent to
rectangular pulses in producing final plastic deformation if the effective pressures and
impulses are the same. The following approximations can reasonably be made if the deforma-
tion is small:

9~0, N,~Nz, Vp=0, U,~0, A, <L, Az<L,

dA, dAg (A.1)
— ~ — =~ (),
dt 0. dt

The response to the initial jump of a rectangular pulse, equations (41), can be in either the
first or second deformation modes, depending on the magnitude of P, .
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Initial first mode response

Making the approximations in the governing equations for first mode response results
in the following sets of approximate equations:

L
oL}
V-7
pHE 40* . NiL
96 dr B 4\/5’

pHLdVF PL N%

2 A 2 /3

N* 2
]
No

(A2)

d0* _ o
dt ’

L
Ut == 6%,
B2

The asterisks indicate that the solution is an approximation to the numerical solution of the
“exact” set of differential equations.
For a rectangular pulse, the solution in the interval 0 < ¢t < ¢, gives

Hf 12
Uk = t; , (A3)
]
where
P, 2 9P,
= I = 1 2 — - 1 * .
/i 20, 32 (\/ + 27a* + 4o, ) (A9
The solution for U for the remainder of the motion t, <t <t is
H
Us = Z[=/alt = 1)* + 28,0t — 1) + fi17], (A5)
V]
where
fim S (A6)
P+ Y1427 '
The time ¢} when the deformation stops is when V3 = 0. It is given by
f1)
tf = t,(l +—=]- (A7
K 7 )
Substituting this result into equation (A.5) gives
Hf, 12
Uiy = 5% (14 2) (A.8)
to /2
for the final plastic deformation at mid-span. As a — 0,
P12 P
UNt: 3H( - ) (1 ——’)-
s(ty) > P, P, (A.9)
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Initial second mode response
The use of the approximations of equations (A.1) in the governing equations for second
mode response results in the following set of approximate equations:
L
Vi — n (1 —e")0Q* =0,
V¥=2V},

pHVY = f P dt + G*(0),

pHV* = fP dt + G* (82[')

pHI? , dO* NEL

] —e*)Y . = M .
% ( %) T M3+4\/§(1 %),
PHL (o E Py 23

2 73

¥y 2

4]
do*
de 7

awwr o,
= =Vh (A.10)

de* . . _
For & = 0, the approximate hinge-band growth equation is

12./3M5 — N3 L(1 — &%) = 0. (A.11)

Assuming P, is large enough that second mode response is initiated, the hinge band has
a constant width ¢ in the interval 0 <t < t,. The solution in this interval results in

k- N
J3P.N,
(A.12)
« HPP
B 2aar t2

The approximate transition pressure P; between initial first and second mode response to
an instantaneous jump is the value of P, for which ¢ = 0. From equations (A.12), Pf is
given by

24d%0,

*—""‘"_-“'_‘_““"—.
Py T 1+ 4/1 + 1082 (A13)
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After the end of the pulse, the second mode response continues as & decreases from &,
to zero. Let ¢* be the time at which the second mode response ends. The solution to equa-
tions (A.10) in the interval ¢, < t < ¢¥ is, using the continuity conditions on the velocities
and displacements at ¢,,

484%0, (1t 12
1—3*=[(1—£E)+ P,y(t_,_l)] ,

(A.14)
Ut — HP,t,(2t —t,)
BT T 26,
The time when the second mode response ends is given by
P g
t* =11 - — y .
¢ [ * 4840, 4o, + 9P,] (A-13)

In the interval ¥ < t < t,, the motion is in the first deformation mode so that equations
. Ui
(A.2) apply (except for the equation for U}, which is found from — i VB) Applying

the continuity conditions on the velocities and displacements at ¥, the solution in this
interval is

U’;-—[ - '(r—t*)] + U3

. (A.16)

The time 1} when the motion stops is found from V3(t}) = 0; it is given by

=il bt (A17)
aa, f
The final plastic deformation at the mid-point of a side is then
g ok th
Ua(tf)—4 i, + Uz o (A.18)
where U} at ¥ is computed from equation A.14. As a — 0,
U*(t,)—>H(P t0)2 (§+;—;—i)- (A.19)

The final deformation results for the deformation at mid-span are computed from
equations (A.8) and (A.18) and plotted in Fig. 19, in the nondimensional form U}(¢})12/Hz2,
as a function of P,/a, for a = 0-056. Also shown are the corresponding results for the
numerical solution of the ““exact” equations with ¢, = 0-01¢,.



732 CaARrL K. YOUNGDAHL

50 —

| R N A I I B I

40 |- a=0.056 .
- EXACT

§r - APPROX

I 30p~ -

-

N‘_O

30 20— —
10—~ —

i | # { { f l;f
0 0.0 002 003 004 005 0.06

P /o'y

Fig. 19. Comparison of exact and approximate solutions for small deformation response to
rectangular pulses.

From these results and other computations, it is apparent that the approximate solution
for rectangular pulses is a good match in the small deformation range to the numerical
solution of the exact equations.

APPENDIX B. STATIC LARGE DEFORMATION SOLUTION
The acceleration terms in the equations of motion vanish for a static pressure P,. From

the equations of motion for the first mode (equation 12) and the yield condition (equation 13),
we then have

NA\?2  (Np\? ]
4M, [2~(~1‘) »-(—B) ] +NBLsin9+NAL(sin0~§9i—)=O,
No No J3

P,L—2Nysin0 + 2N, (°°S b _ sin 9) =0, (B.1)

V3
sin
NA(cosﬂ+~—\—/—§—)—NBcosﬂ=0.

The solution for N, and Ny in terms of 8 and P_ is

N, =Y3 P Lcoso,

2 (B2)

Ng= % P,L(,/3 cos 8 + sin 9),

and the resulting quadratic relationship between P, and tan 8 is
(8«%0? + 26, P, — P2)tan” 6 + 2./3 P20, — P)tan 6 + 8«%6% — 26, P, — 6P? =0. (B.3)

Note from equations (8) and (B.3) that P, = P, at # = 0, which agrees with the limit-load
analysis.
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The plastic stretch in the half-side must be determined in order to compute the static
corner and midspan deflections. From the flow rules given in equation (13), we have that

dA4+Ag) N,y+ Ny

B.4
dé 20 (B4)

¥y
or, using equation (B.2),
d(A,+Ap) PL

0 z‘—y— (2\/5 cos 0 + sin 6). (B.5)
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Fig. 20. Corner deflection as function of static pressure.

Since P, is known from equation (B.3) as a function of 8, equation (B.5) is easily integrated
numerically. The deflections U, and Uy are then found from equation (15); the results are
shown in Figs. 20 and 21 for various values of a. We see that the static deflection at the
corner may be either inward or outward, depending on the combination of « and P/P,.

The substitution of equation (B.2) into equation (17) gives

0*M

— = —P,,

ox? s
so that the bending movement always has a relative maximum at x = 0. Consequently, the
second deformation mode cannot occur for a static load.

(B.6)
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Ug/H

R/5

Fig. 21. Mid-span deflection as function of static pressure.

These results are valid for P, > P, and Nz < N,. At the corner of the yield condition
corresponding to N = Ny, the direction of the strain rate vector is indeterminant and
equation (B.4) cannot be used.

AOcTpakT — Vccrmenyercst AHHAMHYECKOE IIACTHYECKOE IMOBEICHUE IIECTHYTONBHOU PaMEl,
MOJBEPKEHHOM AEHCTBHIO BHYTPEHHOI'O MMITY/IbCA AABJICHMA IPOA3BOILHOTO OYEPTAHMA, YUH-
THIBas reoMeTpuveckoe 3ddexTrr Gommiuux aedopManuil, KOTOpbIE IPOUCXOAAT B MOBTOPHOM
pacmpenenedud peakuuit ot u3ruba ¥ MeMOpaHHBIX ycuiHM. PaccMaTpuBarOTCa MakCHMAJTb-
HbI€ 3HAYEHHA AaBJCHHM OJI1 HECKONMBKO MHOTOKPATHBIX YHCE Ui CTATHYECKOM HAIPY3KH
TeveHns. TIpHHAMAETCA MaTepdal paMbl KaK XeCTKHH, WAealTbHO MmiacTuyeckuit. Onpeness-
ercst 3 deKT OUepTAHHS MMITYNIbCa HA OKOHYATENBHYIO IUTACTHYECCKYIO IehOopManHio IMyTem
YHCJEHHOTO pEImeHMst CUCTeMbl IHpdepeHUHanbHbIX ypaBHEHUH COCTOSHHS, NS pa3Ho-
o06pazus koMORHauH# napaMeTpoB. B o6racTi Manbix mehopManmii yka3aHo, YTO OCTaTOYHas
wiacTaYeckas AedopManms 3aBHCHT OT 3(PHEKTHBHOTO NABJIEHUS, OLPEAEICHHOrO YiICHaMM
MEPBOr0 MOMEHTA MMIYJIbCa HaBleHud. [JIMTENbHOCTh PEarHpOBaHMsA MPONOPHHOHAIBHA K
OIHTENLHOCTH HMIyibca. B obnacta Gomplnux xedopmaiMit ocraTouHasi miiactHdecKas
nedopmanms sBNseTCs GyHKLMEN CpEIHETO NaBIIEHMSA, IPHIIOKEHHOTO BO BPEMSI pearipOBaHUS.
JITATENLHOCT, peardpoBaHHA 3aBACHM OT HOCTOSAHHOM XapaKTEpHCTHIECKOrOo BPEMEHH,
KOTOpas sBjseTcs GyHKIHeH CBOMCTB MaTepHA/la H MISCTHYTOJIbHOTO OYePTAHAS.



