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Abstract-The dynamic plastic response of a hexagonal frame to an internal pressure pulse of
arbitrary shape is analyzed, including large-deformation geometric effects that result in redistri­
bution of the bending and membrane reactions. Peak pressures of several multiples of the static
yield load are considered, and the frame material is assumed to be rigid perfectly plastic. The
effect of pulse shape on final plastic deformation is determined by numerically solving the
governing sets of differential equations for a variety of parameter combinations. In the small
deformation range, the permanent plastic deformation is shown to be dependent on an effective
pressure, defined in terms of the first moment of the pressure pulse; the response duration is
proportional to the pulse duration. In the large deformation range, the permanent plastic de­
formation is a function of the average pressure applied during the response, and the response
duration depends on a characteristic time constant which is a function of material properties
and hexagon size.

INTRODUCTION

A typical reactor core configuration consists of an array of long, thin-walled subassembly
ducts of hexagonal cross section, each containing an array of fuel elements. The space
between adjacent subassembly ducts is approximately equal to the wall thickness; this gap
is maintained by spacer pads at various axial locations. Fuel replacement is accomplished
by removal of a subassembly duct with its enclosed fuel elements by means of a fuel handling
mechanism, which may be designed to extract only one subassembly at a time.

Fuel element failure may result in a fuel-coolant interaction or fission gas release which
exposes the subassembly duct to an internal pressure pulse. The resulting duct deformation
may be of the order of its wall thickness or larger, and plastic yielding of the wall may occur.
If the permanent deformation is sufficiently large, the duct may be jammed into adjacent
ducts or it may bind on the spacer pads during an attempt at removal of the damaged duct;
then standard removal procedures may not be effective. If the damaged duct is adjacent to
a control rod channel, interference with control rod motion may necessitate shutdown of
the reactor until repairs can be made.

For a thin-walled, hexagonal crosssection, large-deformation geometric effects result
in redistribution of the loading between the bending and membrane reactions, so that the
deformed duct can withstand a static pressure higher than the yield limit of an undeformed
hexagon. However, the application of a pressure pulse results in dynamic deformation,
which may, because of inertia effects, significantly exceed the deformation caused by a static
pressure having the same peak value. Conversely ,a pressure pulse may produce less deforma­
tion than a statically applied pressure if the duration of the pulse is sufficiently short.

t Work performed under the auspices of the U.S. Atomic Energy Commission.
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Because of the statistical nature of the phenomena involved, pressure pulses resulting
from fuel element failures are not well defined and are difficult to reproduce in laboratory
simulations of pulse loadings on ducts. Accordingly, an analytical study has been performed
to: develop a computational procedure for determining the dynamic plastic response of a
hexagon to an internal pressure pulse, including large deformation effects; determine the
effect of pulse shape on the permanent deformation of the hexagon; develop procedures for
correlating permanent deformation with easily measured parameters associated with the
pulse shape; and determine characteristic response times for plastic deformation of a thin­
walled hexagon.

Results of the investigation indicate that in the small deformation range the final plastic
deformation depends on the impulse and an effective pressure defined in terms of integrals
of the pressure pulse, analogous to the correlation for other structural configurations [1 ].
The use of the impulse and effective pressure as correlation parameters eliminates the effect
of pulse shape on final deformation and facilitates the interpretation of experimental
results. The time scale of the dynamic deformation is proportional to the time scale of the
pulse, as is typical of small-deformation plasticity solutions, and no intrinsic time constants
are involved.

In the large deformation range, the final plastic deformation depends on the average
pressure applied during the deformation. Characteristic time constants for the deformation
were obtained in terms of material properties and hexagon dimensions; these are in the
millisecond range for typical subassembly ducts, which corresponds to the time scale of
pressure pulses resulting from fuel element failure.

The approach to the large-deformation analysis is similar to that used by Symonds and
Mentel[2], Jones[3], and Symonds and Jones[4], for the finite plastic deflections of beams
with axial restraints. The motion of the hexagon has an additional degree-of-freedom in
that the corners of the hexagon are free to move along radial lines rather than being com­
pletely restrained as in the beam analyses. The "plastic string" phenomenon which
appeared in the beam analyses did not occur here.

STATEMENT OF PROBLEM

A cross section of an internally pressurized hexagonal subassembly duct of wall thickness
H and side width L is shown in Fig. 1. The effect of axial variation of the deflection shape
is neglected compared with the geometric effects of large distortion of the cross section.
Consequently, the problem is reduced to finding the dynamic plastic deformation of a
hexagonal frame loaded by a time-dependent pressure P(t). The redistribution of the
dynamic loading between bending and membrane reactions as the deformation of the cross
section proceeds is included in the analytical model for the large-deformation geometric
effects. Because of symmetry, only the half-side AB need be considered.

The hexagon is assumed to be made of a rigid, perfectly plastic material having yield
stress uyand density p. Elastic deformation is neglected compared with the plastic ~eforma­

tion; strain hardening is neglected compared with the large-deformation geometrIc effects.
Important constants of the hexagon deformation model include a geometric parameter

IX and a time constant to, defined by
IX =H/L,

to = LJP.
uy

(1)
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tt-! J
Fig. 1. Hexagon subjected to internal pressure pulse.
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(2)

For an EBR-II reactor subassembly duct, L = 1'32 in., H = 0·04 in. and IX = 0'03; for an
FFTF reactor subassembly duct, L = 2·48 in., H =0-14 in. and IX = 0·056. These two duct
sizes essentially span the range of typical duct designs. For steel ducts with a yield stress of
30,000 psi, to = 0·16 msec for EBR-II dimensions and to = 0'3 msec for FFTF dimensions.

Two variables of particular interest in this study are UB' the outward deflection at the
center of a side of the hexagon, and UA' the outward deflection at a corner. A negative
value for UA' which occurs in some of the results shown here, indicates that the corners
move inward. Another quantity of interest is the response duration tI' i.e. the time interval
over which dynamic plastic deformation occurs. The values of UA and UB at tI will be
denoted by U AI and UBI' respectively.

Yield condition and flow rule

The yield condition, shown in Fig. 2, is given by

IMI N 2

M
o

+ N~ -1 =0,

where Nand M are, respectively, the resultant membrane force per unit axial length and
bending moment per unit axial length arising from the stress distribution across the wall
thickness at a plastically deforming location on the side of the hexagon; No and M 0' the
values of Nand M for pure stretching and pure bending, are

(J H2

No = (JyH, M o = -y-. (3)
4

The plastic flow rule states that, during plastic flow, the generalized strain rate vector has
the direction of the exterior normal to the yield condition at the considered generalized stress
point[5]. Let A and ebe the stretch and angle change at a point on the side of the hexagon
where plastic deformation is taking place. Then, writing equation (2) as feN, M) = 0,
we have

dA/de _ of / of-- ----.
dt dt aN aM

(4)
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(0, I)

-~-------__f---------~- N/N
(I, 0) 0

Fig. 2. Yield condition.

For the first quadrant of Fig. 2, which is the relevant one for this problem, the flow rule
becomes

(5)

for N < No.

Limit load of undistorted hexagon

Let Py be the limit load of the undistorted hexagon, i.e. the pressure at which the hexagon
is in static equilibrium but plastic deformation is incipient. Plastic hinges are produced at
the corners and centers of sides, where the yield condition is satisfied, and intermediate
positions along the sides correspond to interior points of the yield condition (Fig. 2).

A free-body diagram of the half-side AB is shown in Fig. 3. From the equations of equi­
librium in the horizontal direction, we have that the membrane forces at A and B are equal
in magnitude (Ny) and opposite in direction. By equation (2), the bending moments at A
and B must be equal in magnitude (My), and be directed as shown in Fig. 3 to resist the angle
change. The symmetry of the problem requires that there be no vertical reaction at the
midspan B and no reaction parallel to the dashed line at the corner A; this last condition
implies that

Ny = j3F.

Equilibrium of moments and vertical forces requires that

(6)

(7)
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Fig. 3. Free-body diagram of hexagon half-side at initial yield.
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Substitution from equations (7) into the yield condition (equation 2), results in a quadratic
equation for Py ; its solution is

The bending moment distribution in the half-side is given by

(8)

(
8X2)

M(x) = My I - L 2 '
L

O<x<­- -2 (9)

where x is measured from point B. Consequently, the magnitude of M is equal to My at
points A and B and less than My at interior points.

For O'y = 30,000 psi, Py = 107 psi for EBR-II duct proportions and Py = 363 psi for
FFTF duct proportions.

First plastic deformation mode

The simplest deformation mode which occurs during dynamic distortion has plastic
hinges at the corners and midpoints of the sides of the hexagon connected by rigid sections
of width L/2. A free-body diagram of the typical half-side AB is shown in Fig. 4. The
stretches at the plastic hinges are AA and AB , and the angular rotation occurring at each
hinge is e. Because of symmetry, (1) the force resultants at A and B must be perpendicular
to the dashed lines, and (2) the velocities and displacements of points A and B must be
along the dashed lines. Therefore,

(10)
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Fig. 4. Free-body diagram of hexagon half-side for first plastic-deformation mode.

[Vp +(~+ LlB)nJ tan () = d~B - VT ,

[vp - (~ + LlA)n] tan (~ - e) = d~A + VT ,

(11)

where net) is the angular velocity, and Vp(t) and VT(t) are the velocity components of the
center of mass of the half-side perpendicular and parallel, respectively, to the instantaneous
position of the half-side.

The equations of motion of the half-side of the hexagon are

pHL3 dn NBL NAL(COS e . )96 dt = - M A - M B - -4- sin e+ -4- J3 - sm () ,

pHL dVp PL . ( . cos e)
-2- dt = "2 - NB Sill e+ N A sm e- J3 '

pHL dVT ( sin e)-- -- = N A cos e+ J- - NB cos e.
2 dt 3

The yield condition and flow rule for the plastic hinges at A and Bare

(12)

MA+ (NA)2 = 1,
M o No

MB (NB)2 = I
M + N 'o 0

The angular rotation e is found from

de-=n
dt '

dLlA NAn
dt = 2ay ,

dLlB NBn
dt = 2ay .

(13)

(14)



Dynamic plastic deformation of hexagonal frames 715

(IS)
UB= -1J3 UA+ (-1L + LlA+ LlB)sin e,

where U A and UB are measured positive outward along the dashed lines in Fig. 4.
Equations (l0-15) give thirteen relations for determining the unknown functions of time

NA, N B, M A, MB, F, Q, Vp , VT , LlA, LlB, e, UA' and VB for a prescribed loading P(t).
This set of equations was solved numerically, using a computer subroutine based on the
Bulirsch-Stoer extrapolation method for solving coupled ordinary differential equations[6].

The bending moment distribution in the vicinity of point B, the center of the side, is
given by

and the displacements at the corner and midspan are given by

UA = 2(LlA+ LlB)cos e - L(I - cos e),

4x2(4x - 3L)
M(x, t) = MB+ L 3 (MA+ MB)

4x2(x - L) . e 2x
2
(L - 2x) (COS e . e)

+ L2 NBsm + L2 N A J3 -sm, (16)

where x is measured from point B along the distorted side. The first derivative of M at B
is zero. Therefore, the bending moment has a relative maximum at B if its second derivative
there is negative. For some pulse shapes, the computed values of NA' NB' M A , and M B are
such that the second derivative of M at B, given by

0
2MI 24 8. 4 (COS e . )

--2 = -2:(MA +MB)--NBsme+-NA r; -sme , (17)
ax x=o L L L y3

becomes zero at some time while P is increasing. In order not to violate the yield condition
at a point near B, which would occur if the second derivative changed sign, a hinge band
begins to form at B and spreads out from there as P increases. Plastic deformation involving
a hinge band at B and a hinge at A will be called the second plastic deformation mode and
will be discussed next. By equation (17), the transition from the first to the second deforma­
tion mode is signaled by

6 ) . (COS (J . e)- (MA+MB -2NBLsme+NAL J3 -sm =0. (18)

Second plastic deformation mode

The second deformation mode has a plastic hinge at the corners and a hinge band at the
center ofeach side; there are moving hinges at the ends of the hinge bands, and a rigid section
of wall connects each moving hinge with the nearest corner hinge. A free-body diagram of
the typical half-side AB is shown in Fig. 5. The half-width of the hinge band is e(t)L/2, and
the stretches at the moving hinge and corner hinge are Ll. and LlA , respectively.

As for the first mode, the symmetry of the problem requires that (I) the force resultants
at A and B must be perpendicular to the dashed lines, and (2) the velocities VA and VB and
the displacements V A and UB must be along the dashed lines. The condition on the force
resultant at the corner gives

(19)
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Fig. 5. Free-body diagram of hexagon half-side for second plastic-deformation mode.

and the condition on the velocity resultant at the corner gives

VA COS:: = {Vp - rl~(l - e) + ~A]n}COS () + [~de - VT - d~A]sin (),
6 4 4 dt dt

{vp - [~(1-e) +~A]n}tan(~-()) + [~:; - VT - d~A] =0.

(20)

Assuming that M and N do not vary along the hinge band, all plastic deformation associated
with the band occurs at the moving hinge at its end. Since the velocity at B is vertical by the
second symmetry condition above, the horizontal velocity component at the end of the

band is the band growth rate ~ de. Let the vertical velocity component at the end of the
2 dt

band be V. (positive downward); the velocity components at the end of the band are then
related to motion of the rigid portion of the half-side through

L de {[L ] } (L de d~B)- - = Vp + - (1 - e) + ~B n sin e+ - - + VT - - cos e,
2dt 4 4dt dt

{ [
L ] } (L de d~B) .V = Vp + - (1 - e) + ~B n cos e- - - + VT - - SIn e.

e 4 4 dt dt

The equation of motion for the hinge band region is

(21)

H d Vex, t) = pet)
p dt '

this can be integrated to give

pHV(x, t) = JPdt + G(x),

(22)

(23)

where G(x) is a function to be determined from the motion. In particular, letting x = 0 gives

pHVB = JPdt + G(O), (24)
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. eL .
and lettmg x = - gIves

2

The equations of motion of the rigid portion of the half-side are

pHL
3
(1 - e)3 dn M M L(1 - e) [ N . e N (COS e . e)]
96 dt = - A - B + 4 - B SIn + A J3 - SIn ,

pHL(1 - e) d Vp PL(1 - e) N . e N (COS e . e)
2 dt = 2 - B SIn - A J3 - SIn ,

pHL(1 - e) d VT (e sin e) e
- = N A COS + J- - NB COS .

2 dt 3

717

(25)

(26)

The yield condition and flow rule for the plastic hinges at the corner and end of the hinge
band are

MA+ (NA)2 = 1,
M o No

MB+ (NB)2 = 1,
M o No

d~A NAn
dt = 2uy ,

d~. NBn
dt = 2uy .

(27)

The angular rotation, displacement at the corner, and displacement at midspan are given by

de
dt = n,

dUA _ V
dt - A'

(28)

where VA and VB are found from equations (20) and (24).
The bending movement distribution near the hinge band end of the rigid portion of the

half-side is

2 [ . (COS e )] }+L2 (l _ e)2 (2x + eL - 2L)NB sm e+ (L - 2x)NA J3 - sin e .

The derivative aM/ax is zero at x = eL/2. Let

(29)

a2M
Q = ax2 at

eL
x=-·

2
(30)

The yield condition would be violated in the vicinity of the end of the band if Q were
positive. If the hinge band is increasing in size, we have

IJSSVoI10 No 7 - B

o ~ de 0Q = or dt ~ (31)



718 CARL K. YOUNGDAHL

and if it is decreasing in size,
dl::

Q < 0 for - < o.
dt

(32)

Differentiating equation (29) twice and evaluating the result at x = I::L/2 gives

Q = - L2(l2~ 8)2 (MA +MB) + L(l~ 8) [-2NB sin e+ N A (c~~3e - sin e)]. (33)

For 8 increasing (which occurs, in general, for P increasing), equations (12-21), (24-28),
and (31) are eighteen relations for determining the unknown functions N A' N B' M A' M B ,

F, il, Vp , VT , VA' VB' V" L1A, L1" e, UA' UB, 8, and G for a prescribed loading pet) such
that the motion is in the second deformation mode. If the hinge band is decreasing in size,
equation (31) does not apply; however, G(x) is now a known function since I:: is retreating
through the same values it passed through as it was increasing. Consequently, there is one
less unknown function, and one less equation is needed.

Other plastic deformation modes

The two deformation modes described above each result in the hexagon being distorted
into an irregular twelve-sided figure. Severe loadings can produce transitions to higher
deformation modes with twenty-four sides, forty-eight sides, and so on, until an approxi­
mately circular shape is attained. Such gross distortions of the cross section are beyond the
scope of this study, and only the first and second deformation modes are treated.

(34)

(35)

Initial conditions

At the onset of plastic yielding, all velocities and deformations are zero. If the pressure
passes gradually through the yield load, the initial conditions on the membrane forces and
bending moments are given by equations (7).

An initial instantaneous jump to a pressure Pi can produce either first or second deforma­
tion mode response. For the first mode response, the initial condition on the membrane
forces is determined by solving the simultaneous equations

(NA - N B ) [2 j 3a(NA + N B ) + I] + 2~NA = Pi,
N B No .J3No Cly

N A - N B + 6a2 (2 _N1 +2N~) _ 2J3a NA = o.
N B No No

The initial condition on the bending moments is then found from equations (13).
For second mode response, the initial conditions on the membrane forces are

NA- = (1 + C1)C2,
No

N B C ('-=(1- d2'
No

and the initial hinge band width is
a(1 + CdC 28=1- ,

J3C1

(36)
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where C1 and Cz are defined by

(37)

p.
2~

(Jy
C1 = ,

p. J( P.)Z p.
4-~+ 4-~ +1l2~

(Jy (Jy (Jy

[
9C1 ]l /Z

Cz = 9C
1
(1 + cD + (1 + C1)Z •

Again, the initial values of M A and M B are found from the yield condition.
Let Ph be the initial jump pressure which marks the transition between first and second

mode response. This transition pressure can be determined either by finding the value of Pi
such that the values of NA' NB' M A' and M B calculated from equations (13) and (34)
satisfy equation (1S) for e= 0 or by finding the value of Pi such that e = 0 in equation (36).
The result is

Ph 4C(1 + 7C)

(Jy I + C
(3S)

where C is related to (I. through

(39)

For small values of (I., Ph is approximately 3Py •

(40)
t < O.pet) = 0,

RESULTS

In order to illustrate some qualitative aspects of the hexagon response, results of two
typical problems will be shown firstt. Consider an exponential decay pulse of the form

P(t)=Pme- tlt
" t;;:::O

Let (I. = 0·056; then Py = 0·0121 (Jy by equation (S). Take Pm = 2Py = 0·0242(Jy for each
problem, but let t1 = 0·01 to in the first example and t1 = 2 to in the second, where to is
defined in equations (1). The dimensionless quantities P/(Jy, NB/N0' UA/H, and UB/H are
shown in Figs. 6 and 7 as functions of time for each of the two examples.

Comparison of the results, which are for the same peak pressure but different pulse
duration, indicates significant qualitative and quantitative differences in the responses. For
the shorter duration pulse, the final permanent deformation at the center of the side is
approximately I·SSH x 10- 4

, which is in the small deformation range; for the longer
duration pulse, UB = 1·61H at the end of the motion, which is in the large deformation
range. The final deformations at the corners are 7·6H x 10- 6 for t1 = O·Olto and -0·25H
for t1 = 2to , the negative sign indicating that the corners move inwards. Thus the corner
deflection is small compared to the mid-span deflection in the first example, but it is propor­
tionately larger in the second. For the longer duration pulse, the corners move out initially

t See Ref. [71 for a more detailed presentation of results.
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Fig. 6. Typical small deformation results.
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Fig. 7. Typical large deformation results.

(41)

and then later move in as the large-deformation membrane effects become more important;
the motion stops at a time when the applied pressure is still greater than the yield pressure
of the undeformed hexagon, which shows that the inclusion of the large deformation effects
results in a strengthening of the hexagon.

Consider a rectangular pulse defined by

pet) = Pro O:s; t :s; tro

P(t) = 0, t < 0 and t > tr •

Figure 8 shows the final midspan deflection UBI and the response duration tI as functions
of the pulse duration tr for 0: = 0·056 and Pr = 2Py • In the small deformation range the
curves for tlito and UBIIH are straight lines with slopes ofone and two, respectively, indicat-
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P, • 2P,· 0.024210;

1.0

Fig. 8. Final midspan deflection and response duration as functions of rectangular pulse
duration.

ing that tf is directly proportional to trand UBJ varies as t;. As the pulse duration is increased,
the final deflection and response duration increase until trfto = HI. For values of tr
greater than 1·11 to, the deformation stops before the end of the pulse because the hexagon
is distorted into a shape that can statically withstand the applied pressuret. Consequently
the response to a step pulse is identical to the response to a rectangular pulse of the same
magnitude if tr is sufficiently large. The maximum midspan deflection is about 2·2 times the
wall thickness for this combination of Pr and a.

Small deformation response

The dependence of the hexagon response in the small deformation range on the geometric
parameter a is essentially only through the yield load Py' This can be seen from Figs. 9 and 10
where (UBffH)(toftr)2 and tfftr are plotted as functions of PrfPy for short duration rectan­
gular pulses. The division of UBJ by t; and tJ by tr is suggested by the small deformation
behavior exhibited in Fig. 8. The range of values of a shown in Figs. 9 and 10 exceeds the
range of physically realistic subassembly duct designs.

The effect of pulse shape on permanent plastic deformation has been investigated for a
variety of structural configurations[l]. The deformations were assumed to be small for each
configuration, and each was assumed to be made of a rigid, perfectly plastic material. In
each case it was found that the maximum permanent plastic deformation, UJ say, could be
approximated by

Uf ~ 12f(Pe), (42)

wherefis a function, lis the impulse, and Pe is an effective value of the load. In essence, an
arbitrary pulse can be replaced by an equivalent rectangular pulse of height Pe and duration
te' where

Pe=Ifte,

te = 2tm ·
(43)

t Because of the kinetic energy involved in the dynamic deformation, the distortion overshoots the
amount necessary to contain the applied pressure statically[8l
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Fig. 9. Effect of a: on final mid-span deflection in small deformation range.
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Fig. 10. Effect of a: on response duration in small deformation range.

In the above, tm is the mean time of the pulse measured from the time ty when plastic
deformation is initiated and / is the applied impulse during plastic deformation, i.e.

I
I,

/ = P(t) dt.
ty

(44)

The final time tf needed to evaluate the integrals in equations (44) can be computed approxi­
mately from

(45)

The correlation indicated in equation (42) is valid also for small deformations ofa hexagon.
Figures 11 and 12 show UBf//2 (nondimensionalized) as a function of Pm/Py and Pe/Py,



Dynamic plastic deformation of hexagonal frames 723

2.5.-----,-----,----T---'

2.0~
I RECTANGULAR

0.5
a -0.03

Ot:- -'- -'- -'- -:'

I 2 3 4 5
P.,!Py

Fig. 11. Final mid-span deflection in small deformation range as function of peak pressure for
various pulse shapes.
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Fig. 12. Final mid-span deflection in small deformation range as function of effective pressure
for various pulse shapes.

respectively, for various pulse shapes, where Pm is the peak pressure of the pulse and Pe is
its effective value as computed from equations (43). The exponential decay and rectangular
pulses are defined by equations (40) and (41), and the linear decay pulse is defined by

(46)
pet) = Pm(1 - ~) , 0 ::; t ::; t2

pet) = 0, t < 0 and t> t2 •

The time constants for the various pulses are chosen small enough that the response is in the
small deformation range.

From Fig. 11 we see that the final deflection is strongly dependent on the pulse shape,
even for pulses which have the same peak value and impulse. At Pm = 2Py , for example, the
deformation produced by a rectangular pulse is roughly twice that produced by an expo­
nential-decay pulse. Considering the same deformations as functions of the effective pressure,
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as in Fig. 12, compresses the curves together. The dashed line in Fig. 12 is for an approximate
closed-form solution for small deformation response given in Appendix A.

In order to obtain a prediction for tI analogous to that of equation (45), tI PylI is plotted
as a function of PelPy in Fig. 13 for various pulse shapest. We see that tfP II is close to
unity for a range of values of PelPyand also that the curve for the approximat: solution is a
reasonable representation for the other curves.

5

EXPONENTIAL
DECAY

0.96

"­
0.>-

;- 0.94

1.00 I-----.:::--_~-....

0.92 a-O.03

0.90

0.98

Fig. 13. Response duration as function of effective pressure for small deformation range.

(47)

Large deformation response

Because of membrane effects, an internally pressurized hexagon deforms into a shape
which can statically withstand a pressure higher than the initial yield load. This static large­
deformation solution is derived in Appendix B. Applying a step pulse results in a large
deformation dynamic plastic response which stops at some time tI dependent on the pulse
height and the geometric parameter a. Consequently the response to a rectangular pulse with
duration greater than tf is identical to the response to a step pulse with the same height.
Results will be shown next for the final plastic deformations and response times produced
by step pulses.

Consider a step pulse defined by

P(t) = Pm, 0 ~ t < 00,

P(t) = 0, t < O.

The final plastic deformation at the mid-point of a side divided by the wall thickness is given
in Fig. 14 as a function of the ratio of step pulse height to limit load for various values of a.
It is apparent from the curves that a thin hexagon must deform relatively more than a thick
one in order to contain a given multiple of its respective yield load. The final displacement
of a corner divided by the wall thickness is shown in Fig. 15 as a function of PmlPy for
various values of a. Except for thick walls and small step pulse height to yield load ratios,
UAI is negative, i.e. the comers of the hexagon more inwards in response to the step pulse.
The ratio of response time tf to time constant to (see equations 1) is plotted in Fig. 16 as a
function of step pulse height divided by limit load for various values of a.

t t, = 0 for the pulses shown.
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Fig. 14. Final mid-span deflection for large deformation response to a step pulse.

Parameter studies were performed to determine the effect of pulse shape on the large
deformation response of the hexagon[7]. Some typical results will be presented here, and
the permanent plastic deformation produced by an arbitrary pulse will be related to that
produced by an equivalent step pulse.

Figure 17 shows results for an exponential decay pulse, defined by equation (40), with
CI. = 0·056. Computations were made for various combinations of the pulse parameters Pm
and t1• The peak pressures chosen were Pm = 0'26Po, 0'3Po, 0'35Po, 0'4Po, 0·45Po, 0'5Po,
and 0·55P0; for each of these values of Pm, calculations were performed for t1 = to, 2to ,
3to , 4to , and 5to. The characteristic time constant to for the plastic response is defined by
equations (l), and Po is the limit load of the circumscribed circular ring, given by

H
Po=uYL '

The open circles on Fig. 17 are the values of UBf/H plotted as a function of Pm/Po, and
the solid circles are the same values of UBf/H plotted as a function of PAVG/P0, where PAVG
is the average pressure applied during the plastic response, i.e.

I It,
PAVG = - P(t) dt. (49)

tf 0

The curve on the figure is the permanent deformation produced by a step pulse of height Pm.
It is apparent that a step pulse and an exponential-decay pulse which have the same average
value during the response produce essentially the same permanent plastic deformation.

Similar results are shown in Fig. 18 for linear-decay pulses (see equation 46) with CI. = 0'056.
Again the permanent plastic deformation is a function of the average pressure applied
during the deformation. This functional relationship is known from the step pulse results.
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Fig. 16. Response duration as function of step pulse height.
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Fig. 17. Comparison of results in the large deformation range for exponential-decay and
step pulses.

2.5 ,-----.--,-----,--__,r----,-----,-:::;:::;--,

2.0

:I: 1.5
.....

0;
:::I

1.0

0.5

0

0

0

0 2 0

0 0

0
0

0

0 0=0.056

!i =I 0 LINEAR DECAY PULSE,10
0 P= Pm (1- 1/12)

0.50.3

OLL_..l-_--L.__l....-_-L_----I__...L.-_--'

0.2

Fig. 18. Comparison of results in the large deformation range for linear-decay and step pulses.

In experiments where UB(t), P(t), UBI' and tI can be measured, PAVG is easily determined
from P and tI and the correlation of UBI to PAVG can be investigated. For analytical studies,
however, there appears to be no simple relationship analogous to equations (45) for the small
deformation range to predict tI for the large deformation response. Without an a priori
determination of tI for a given pulse either the response to the step pulse with the same
height as the peak (rather than the average) pressure of the pulse may be used to bound the
permanent deformation, or the computer solution may be obtained for the given pulse.

CONCLUSIONS

The permanent plastic deformation of a hexagon resulting from a pressure pulse has been
shown to be dependent on the pulse shape, magnitude, and duration. The nature of this
dependence is qualitatively different in the small and large deformation ranges.
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The correlation of permanent plastic deformation to pulse parameters in the small
deformation range implies that an earlier occurring peak produces more deformation than
a later one of the same height and impulse. This is because an earlier peak results in a smaller
value of the moment arm of the pressure shape, tm , and, consequently, in a larger value of
the effective pressure, Pe . The response time in the small deformation range is proportional
to the time scale of the pulse and is independent of the material and geometric constants
of the hexagon.

In the large deformation range the permanent plastic deformation depends on the
average pressure applied during the deformation and, therefore, is not sensitive to the
location of the peak pressure. The characteristic response time is virtually independent of
the pulse time-scale for long duration pulses but depends on the material and geometric
constants of the hexagon through !Yo, to, and Py. This response time is of the same order of
magnitude as the pulse durations to which a reactor subassembly may be exposed.
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APPENDIX A. APPROXIMATE SMALL-DEFORMATION SOLUTION

Many terms in the governing sets of differential equations are negligible if the pulse
duration is such that the displacements of the sides of the hexagon are small compared to its
wall thickness. An approximate, closed-form solution can then be obtained for rectangular
pulses. This approximate solution is useful because pulses of other shapes are equivalent to
rectangular pulses in producing final plastic deformation if the effective pressures and
impulses are the same. The following approximations can reasonably be made if the deforma­
tion is small:

{} ~ 0, VA ~o, ~B~L,

(A.l)

The response to the initial jump of a rectangular pulse, equations (41), can be in either the
first or second deformation modes, depending on the magnitude of P, .
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(A. 2)

Initial first mode response

Making the approximations in the governing equations for first mode response results
in the following sets of approximate equations:

* L *Vp - 4" 0 = 0,

pHL3 dO* N* L
----= -2M;+~,

96 dt 4}3

pHLdV; PL N~

-2-cit=T- }3'

M; = M~ = M 0 [ 1 - (~:r],
d8*
-=0*
dt '

U* -!: 8*B-
2

.

The asterisks indicate that the solution is an approximation to the numerical solution of the
" exact" set of differential equations.

For a rectangular pulse, the solution in the interval 0 ~ t ~ t, gives

U* - Hit t
Z

(A.3)
B - tZ '

o
where

P, 2 (J Z 9P, )It = - = - 1 + 27rx + - - 1 .
rx Z(J 9rxz 4(Jy y

The solution for U; for the remainder of the motion t, ~ t ~ tf is

* H Z ZUB = z[ -fz(t - t,) + 2ltt,(t - t,) + Itt,],
to

where
6

fz = -------;===;:0
I +JI + 27rxz

The time tj when the deformation stops ,is when V~ = O. It is given by

tj = t,( I +~) .
Substituting this result into equation (A.5) gives

U*(t*) = HI/; (1 + 11)
B f t6 Iz

for the final plastic deformation at mid-span. As rx --+ 0,

*(*) (P,t,')Z( Py )UB tf --+ 3H -- I - - .
Pyto P,

(A.4)

(A. 5)

(A.6)

(A.7)

(A.8)

(A.9)
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Initial second mode response

The use of the approximations of equations (A. I) in the governing equations for second
mode response results in the following set of approximate equations:

* LV p -4"(I-13*)Q* =0,

pHV; = I Pdt + G*(O),

pHV: = IPdt + G* r:L
) ,

pHU dQ* N*L
-- (I - 13*)3 - = - 2M; + _B_ (l - 13*),

96 dt 4J3

pHL(I_~*)dV~ PL N;
2 "dt"2 (l - 13*) - )3'

M; = M~ = M o [I - (Z:fJ,
dO* = Q*
dt '

dU; _ V*
dt - B'

For d13* ~ 0, the approximate hinge-band growth equation is
dt

(A.W)

(A. I I)

(A.I2)

Assuming P, i~ large enough that second mode response is initiated, the hinge band has
a constant width 13~ in the interval 0 ~ t ~ tr • The solution in this interval results in

* HPr t
2

UB = -2a;-::2'""'a-t"""2
y 0

The approximate transition pressure P: between initial first and second mode response to
an instantaneous jump is the value of P, for which e~ = O. From equations (A.I2), P: is
given by

(A.I3)
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After the end of the pulse, the second mode response continues as E decreases from Eo

to zero. Let t: be the time at which the second mode response ends. The solution to equa­
tions (AlO) in the interval t, S t s t: is, using the continuity conditions on the velocities
and displacements at t"

[
4Sex20" (t )] 1/2

I - E* = (1 - E6) +T t, - I ,

The time when the second mode response ends is given by

(A.14)

(AI5)

In the interval t: s t s tf ' the motion is in the first deformation mode so that equations

(A2) apply (except for the equation for V;, which is found from ~; = V;). Applying

the continuity conditions on the velocities and displacements at t:, the solution in this
interval is

The time tj when the motion stops is found from V;(tj) = 0; it is given by

P t
t* = t* + ' ,
f £ 2ex2 0" fy 2

The final plastic deformation at the mid-point of a side is then

where V; at t: is computed from equation A.14. As ex ..... 0,

(A.16)

(Al7)

(A.1S)

(A.19)

The final deformation results for the deformation at mid-span are computed from
equations (AS) and (A. IS) and plotted in Fig. 19, in the nondimensional form V;(tj)t~/Ht;,

as a function of P,/O"y for ex = 0·056. Also shown are the corresponding results for the
numerical solution of the" exact" equations with t, = 0,01 to'
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Fig. 19. Comparison of exact and approximate solutions for small deformation response to
rectangular pulses.

From these results and other computations, it is apparent that the approximate solution
for rectangular pulses is a good match in the small deformation range to the numerical
solution of the exact equations.

APPENDIX B. STATIC LARGE DEFORMATION SOLUTION

The acceleration terms in the equations of motion vanish for a static pressure Ps • From
the equations ofmotion for the first mode (equation 12) and the yield condition (equation 13),
we then have

(B.l)

(B.2)

[ (
NA )

2
(Ns) 2] . ( . cos B)4Mo 2- No - No +NsLsmO+NAL smO-.j3 =0,

PsL - 2NB sin (J + 2N,(e~o-sin 0) = 0,

N,( (cos B+ S);) -NB cos 0 = O.

The solution for N A and N B in terms of () and p. is

J3N,( = _ PsL cos 0,
2

1 J-NB = i PsL( 3 cos (J + sin (J),

and the resulting quadratic relationship between Ps and tan 0 is

(8a 2a'; + 2uyPs - P;)tan2 (J + 2J3P.(2uy - Ps)tan (J + 8a2u; - 2uyPs - 6P; = o. (B.3)

Note from equations (8) and (B.3) that Ps = Py at (J = 0, which agrees with the limit-load
analysis.
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(BA)

The plastic stretch in the half-side must be determined in order to compute the static
corner and midspan deflections. From the flow rules given in equation (13), we have that

d(AA + AB) NA + N B

d8 2ay
or, using equation (B.2),

d(A + A) P L J- .
A B = _s_ (2 3 cos 8 + Sin 8).
d8 4ay

o
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Fig. 20. Corner deflection as function of static pressure.

(B.5)

Since Ps is known from equation (B.3) as a function of 8, equation (B.5) is easily integrated
numerically. The deflections UA and UB are then found from equation (15); the results are
shown in Figs. 20 and 21 for various values of tX. We see that the static deflection at the
corner may be either inward or outward, depending on the combination of tX and Ps/Py •

The substitution of equation (B.2) into equation (17) gives
(PM
GX2 = - P., (B.6)

so that the bending movement always has a relative maximum at x = O. Consequently, the
second deformation mode cannot occur for a static load.
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Fig. 21. Mid-span deflection as function of static pressure.

These results are valid for Ps ;::: Py and NB < No. At the corner of the yield condition
corresponding to N = No, the direction of the strain rate vector is indeterminant and
equation (B.4) cannot be used.

AOCTpaKT - I1CCJIe.l\YeTCli ,l:\HHaMH'IecKoe nJIaCTFI'IeCKOe nOBe,l:\eHHe llIecTH)TOJIhHOH paMhI,

nO,l:\aeplKeHHoH ,l:\eD:cTBHlO BHYTpeHHoro HMIIyJlbCa ,l:\aBJIeHHll npOH3BOJIhHOrO O'iepTaHHH, ylfH­

ThIBaH reoMelpHlfecKoe 3cPcPeKThI 60JIhllIHX ,l:\ecP0pMaI.\HH, KOTophle npOHCXO,l:\HT B nOBTopHOM

pacnpe,l:\eJIeHHH peaKI.\HD: OT H3rn6a H MeM6paHHhlx YCHJIHD:. PaccMaTpHBaIOTcH MaKCHMaJIh­

Hhle 3Ha'leHHH ,l:\aBJIeHHD: ,l:\JIH HecKOJIhKO MHOrOKpaTHhIX lfHceJI ,l:\JIli CTaTH'IeCKOH Harpy3KH

Te'leHHH. IIpHHHMaeTCli MaTepHaJI paMbI KaK lKecTKHH, H,l:\eaJIhHO nJIaCTH'IecKHlt Onpe,l:\eJIll­

eTCH 3cPcPeKT O'iepTaHHH HMnYJIbCa Ha OKOHlfaTeJIbHYIO nJIaCTH'IeCKYIO ,l:\ecPopMaI.\HIO nyTeM

lfHCJIeHHOrO pellIeHHll CHCTeMbI ,l:\HcPcPepeHI.\HaJIhHbIX ypaBHeHHD: COCTOHHHll, ,l:\JIli pa3HO­

06pa3HH KOM6HHaI.\HD: napaMeTpOB. B 06JIaCTH MaJIbIX ,lI;ecPopMaI.\HH yKa3aHo, 'ITO OCTaTO'lHaH

nJIaCTHlfecKaH ,lI;ecPopMaI.\HH 3aBHCHT OT 3cPcPeKTHBHoro ,lI;aBJIeHHH, onpe,l:\eJIeHHOrO '1JIeHaMH

nepBoro MOMeHTa HMnyJIbCa ,lI;aBJIeHHH. ,LJ;JIHTeJIbHOCTb pearHpOBaHHll npOnOpI.\HOHaJIhHa K

.ZI:JIHTeJIhHOCTH HMnYJIhCa. B 06JIaCTH 60JIbllIHX ,lI;ecP0pMaI.\l{H OCTaTO'lHaH nJIaCTHlfecKali

,lI;ecPopMaI.\HH HBJIHeTCH cPYHKI.\HeH cpe,ll;HerO ,lI;aBJIeHHH, npHJIOlKeHHoro BO BpeMH pearHpOBaHHH.

,LJ;JIHTeJIbHOCTb pearnpOBaHHH 3aBHCHM OT nOCTollHHoD: xapaKTepHCTH'fecKoro BpeMeHH,

KOTOpU HBJIlleTCH cPyHKQHelt caoHCTB MaTepHaJIa H llIecTHyfOJIhHOrO O'iepTaHHH.


